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OSCILOSbrass is an acoustic solver for predicting the natural modes of brass wind instruments
from their geometry. It was created from the cold flow part of OSCILOSlong, an aeroacoustic
solver designed to predict thermoacoustic instabilities in gas turbine engine combustors.
OSCILOSlong, the Open Source Combustion Instability Low-Order Simulator (longditudinal),
was developed by Prof. Aimee Morgans et al [1] at Imperial College London. OSCILOSbrass

supports more flexible specification of geometry, several additional boundary conditions, and
new output data formats compared to existing versions of OSCILOS, but the equations used
by the solver are the same as those of OSCILOSlong.

The code is open source, written in MATLAB®, and distributed under an open source license.
It is highly modular, easy to use, and freely available from https://www.oscilos.com.
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How to Cite OSCILOSbrass

When using OSCILOSbrass, please cite:

• MacLaren, A., Morgans, A. S. and Gaudron, R. (2021). OSCILOS_brass Technical report.

• MacLaren, A., Morgans, A. S. and Gaudron, R. (2021). OSCILOS_brass - An open-source acoustic

solver for brass instruments. 27th International Congress on Sound and Vibration (ICSV27).

Open Source License

Copyright © 2021, Imperial College London

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used

to endorse or promote products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-

ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.
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1 Getting Started

OSCILOSbrass is written in MATLAB®, and is available from the OSCILOS website

https://www.oscilos.com.

1.1 Running the Code

An active installation of MATLAB®, with the Optimisation toolbox installed, is required to

run OSCILOSbrass. The code was developed on version R2020a.

The open-ended cylinder example in Sec. 1.2.1 runs out-of-the-box - simply run the MATLAB

script ./OSCILOS_brass.m. For the remainder of this document, ./ indicates the OSCILOSbrass

working directory, e.g. C:/Users/amacl/Downloads/OSCILOS_brass/, whose contents are

shown in Fig. 1.

Figure 1: Directory tree and key files used by OSCILOSbrass.
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Two files are required as input, and must be located in ./Inputs - see Sec. 3.

• The configuration file (Config.txt by default) specifies the configuration options

• The geometry file (Geometry.txt by default) defines the geometry to solve

All output data is written to ./Outputs - see Sec. 4.

The top-level ./OSCILOS_brass.m script runs the 5 subfunctions in the order listed below.

These are located in ./SubFunctions/.

1. Config_subfc - reads and initialises configuration parameters

2. Geometry_subfc - reads and initialises the geometry

3. Mean_flow_subfc - calculates the flow properties throughout the domain

4. BC_subfc - initialises the boundary conditions

5. Solver_subfc - solves the equations and outputs the various results

1.2 Quick Examples

A walkthrough of two basic examples located in the ./Library folder is provided as a quick

demonstration of OSCILOSbrass.

1.2.1 Open Cylinder (e.g. Boomwhacker®)

Consider a long, thin cylindrical pipe, open at both ends, sustaining no axial mean flow,

subject to some transient excitation. A real-life example is a Boomwhacker®, the popular

plastic tuned-percussion instrument. We wish to establish the resonant modes of the cavity

within the pipe based on its geometry.

Initially, we choose to model each end as perfectly open, i.e. a pressure-release condition with

reflection coefficient R̃ = −1, and we assume standard atmospheric conditions. The minimum

configuration file required to achieve this is as follows:

p1 101325.0 % Mean pressure at inlet [Pa]

T1 298.2 % Mean Temperature at inlet [K]

M1_u1 1e-5 % Value of M1 [-] (nonzero but negligible)

inlet_type 1 % Pressure-release inlet boundary condition

outlet_type 1 % Pressure-release outlet boundary condition
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Configuration options are discussed in detail in Sec. 3.1

The geometry for a simple cylinder of length 1.263 m and radius 0.05 m (corresponding to the

length of the C3 boomwhacker) may be specified with the geometry file below:

x[m] r[m] SectionIndex TubeIndex

0 0.05 0 0

0.6315 0.05 0 0

1.263 0.05 0 0

This geometry is visualised in Fig. 2. Geometry specification is discussed in detail in Sec. 3.2.
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Figure 2: Geometry plot for Cylinder example.

The output file produced by OSCILOSbrass is then as follows:

Mode number Frequency [Hz] Growthrate [1/s] EFP [cents] Note

1 137.05 0.00 +0.00 C#3-19.4¢

2 274.09 0.00 +0.00 C#4-19.4¢

3 411.14 0.00 +0.00 G#4-17.5¢

4 548.18 0.00 +0.00 C#5-19.4¢

5 685.23 0.00 +0.00 F5-33.1¢

6 822.27 0.00 +0.00 G#5-17.5¢

7 959.32 0.00 +0.00 Bb5+49.4¢

The zero growth rate of these modes agrees with analytical expectations - the R̃ = −1

boundary conditions do not account for any loss mechanism so we expect neither amplification
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nor attenuation with time. The perfect harmonicity (zero deviation from Equivalent Fundamental

Pitch, see Sec. 4.2.3 for more details), implying the modes fall exactly at integer multiples of

the fundamental frequency, is also as expected.

The pitch however falls around 80¢ sharp of the expected C3. Additionally we seek to model

the loss mechanisms responsible for faster decay of higher frequencies. One such model is

given by Levine and Schwinger [2] for thin open-ended cylinders such as this. Replacing the

boundary condition specifications as follows implements a polynomial approximation to the

Levine-Schwinger condition:

inlet_type 11 % Levine-Schwinger inlet boundary condition

outlet_type 11 % Levine-Schwinger outlet boundary condition

In this case the output file becomes:

Mode number Frequency [Hz] Growthrate [1/s] EFP [cents] Note

1 130.71 -1.88 -2.37 C3-1.3¢

2 261.50 -7.30 -1.88 C4-0.9¢

3 392.43 -15.92 -1.09 G4+1.9¢

4 523.56 -27.34 +0.00 C5+1.0¢

5 654.96 -41.20 +1.34 E5-11.3¢

6 786.66 -57.11 +2.91 G5+5.9¢

7 918.71 -74.76 +4.67 Bb5-25.5¢
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(b) Levine-Schwinger

Figure 3: Eigenspace contour plot for Cylinder example.
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(a) R̃ = −1

0 0.16 0.32 0.48 0.64 0.8

0

0.5

1

1.5

2

2.5

0

1

2

3

4

5
10

-3

(b) Levine-Schwinger

Figure 4: Mode shapes for Cylinder example.
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Therefore for this geometry, introducing the Levine-Schwinger condition lowers the fundamental

by 80¢ to just under C3, and the familiar harmonic series on C is apparent. Inharmonicity

is also introduced, due to the frequency dependence of the end correction, which alters each

modal frequency to a different extent. The growth rate decreases with frequency on account

of the greater radiation efficiency of the open ends at higher frequencies.

The plot of the eigenspace residual for the two cases is shown in Fig. 3.

Mode shapes for the 4th mode, showing the axial distribution of acoustic pressure and velocity

magnitudes, are shown in Fig. 4.

1.2.2 Exponential Horn (e.g. trumpet bell approximation)

Backus and Hundley [3] observe that a rudimentary approximation of brass instrument

geometries may be achieved using simple cylindrical, conical and exponential-horn shaped

sections. Consider a cylinder connected to a diverging exponential horn, with inlet velocity

u1 = 0.5 m/s typical of quiet playing. Imposing a closed-end boundary at the inlet (narrow

end) and the Levine-Schwinger condition at the outlet (wide end) provides a very basic

approximation to the playing conditions of a trumpet. No attempt is made to accurately

represent the exact bore dimensions, or the effect of the mouthpiece and lips. We wish to

establish the modes of this simple system.

The minimum config file for these conditions is as follows:

p1 101325.0 % Mean pressure at inlet [Pa]

T1 298.2 % Mean Temperature at inlet [K]

choice_M1_u1 2 % Specify u1

M1_u1 0.5 % Value of u1 [m/s]

inlet_type 2 % Closed-end inlet BC

outlet_type 11 % Levine-Schwinger outlet BC

The geometry file for a cylinder and exponential diverging horn, as shown in Fig. 5, is:

x[m] r[m] SectionIndex TubeIndex

0 0.01 0 0

0.5 0.01 0 2

1.2 0.05 0 0
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Figure 5: Geometry plot for exponential horn example.

The results produced by OSCILOSbrass are as follows:

Mode number Frequency [Hz] Growthrate [1/s] EFP [cents] Note

1 96.72 0.46 -515.63 G2-22.7¢

2 257.71 -0.61 -19.04 C4-26.1¢

3 392.96 -4.79 +9.39 G4+4.3¢

4 521.11 -14.42 +0.00 C5-7.1¢

5 658.11 -24.02 +17.75 E5-3.0¢

6 789.18 -38.43 +16.55 G5+11.4¢

7 933.20 -48.38 +39.87 Bb5+1.6¢
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Figure 6: Equivalent Fundamental Pitch deviation plot for exponential horn example.
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Note that even with this extremely basic model, characteristic behaviours of the input

impedance peaks of trumpets and trombones are evident: a very flat (in pitch) fundamental

mode, followed by a reasonably harmonic series of modes, the higher ones with faster

attenuation due to better radiation efficiency at the bell.

The inharmonicity plot, visualising the deviation from equivalent fundamental pitch with

reference to 1/4 of the frequency of mode 4, is shown in Fig. 6. The reader is referred to

Sec. 4.2.3 for a more detailed discussion of this plot. The inharmonicity pattern is reminiscent

of that found from experimental measurements of trombones, e.g. by Braden [4].

2 Solver Model

A summary of the working principles of the solver is provided here. For a more rigorous

derivation and discussion of the underlying equations, the reader is referred to the OSCILOS

Technical Report [1].

2.1 Assumptions

The OSCILOSbrass solver makes the following assumptions:

1. Circular bore cross-section, 1D analysis

2. No heat addition, flames or flame perturbations (likely to hold for many brass instruments).

OSCILOSlite and OSCILOSlong are capable of modelling these.

3. No entropy waves, heat exchangers, branched Helmholtz resonators or bore perforations

(also holds for most brass instruments). OSCILOSlong is capable of modelling these.

4. ‘Low’ frequency and ‘narrow’ bore - higher transverse eigenmodes are assumed evanescent.

According to Candel and Poinsot [5] this is valid on condition that

f <
c

2πaα01 (1)

for frequency of interest f where c is local sound speed in a bore of radius a, and

α01 = 1.8412 is the 1st root of the first derivative of the first order Bessel function of

the first kind, J ′1(α01) = 0. For the largest trumpet bell diameter given by Bilbao and

Chick [6], the limit of validity is 3.2 kHz, which lies above the 25th mode of a theoretical

perfectly harmonic trumpet with equivalent 4th mode.
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5. The only stagnation pressure loss in the bore is associated with the expansion of the mean

flow as the bore diverges. This does not hold at high sound pressure amplitudes, at which

shock waves have been observed, e.g. by Hirschberg et al. [7]. The wavefront-steepening

behaviour observed under these conditions cannot be captured by the linear treatment

used by this solver in its current implementation.

2.2 Governing Equations

This section outlines the underlying equations of the acoustic wave model, mean flow

calculation, and the interpolation of nonlinear geometric profiles.

2.2.1 Acoustic Wave Equations

OSCILOSbrass uses a 1D plane-wave ‘transmission-line’ model for acoustic perturbations.

Analysis is conducted on a model instrument bore comprising two or more cylindrical elements

connected coaxially in sequence, as shown in Fig. 7. The interfaces between the cylinders have

axial location xk where k = 0, 1, 2, . . . N . The cylinders themselves are termed ‘tubes’, of

which there are N by definition. The kth tube has inlet at xk−1 and outlet at xk.

Figure 7: Schematic view of 1D discretised instrument bore model comprising connected
cylindrical sections.

The acoustic perturbations are expressed as the sum of downstream and upstream propagating

waves with amplitudes A+
k and A−

k respectively.
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The pressure p, axial velocity u and density ρ in tube k are therefore given by Eq. 2.

pk(x, t) = p̄k + p
′

k(x, t) = p̄k + A+
k (t− τ+

k ) + A−
k (t− τ−

k ) (2a)

uk(x, t) = ūk + u
′

k(x, t) = ūk + 1
ρ̄kc̄k

[
A+
k (t− τ+

k ) + A−
k (t− τ−

k )
]

(2b)

ρk(x, t) = ρ̄k + ρ
′

k(x, t) = ρ̄k + 1
c̄2
k

[
A+
k (t− τ+

k ) + A−
k (t− τ−

k )
]

(2c)

The convective time delays τ+
k and τ−

k are

τ+
k = x− xk−1

c̄k + ūk
τ−
k = xk − x

c̄k − ūk
(3)

2.2.2 Mean Flow Equations

The governing equations implemented by OSCILOSbrass are given, in matrix form, by Eq. 4.

Bk,2


p̃k+1(xk, s)

ρ̄k+1c̄k+1ũk+1(xk, s)

ρ̃k+1(xk, s)c̄2
k+1

 = Bk,1


p̃k(xk, s)

ρ̄kc̄kũk(xk, s)

ρ̃k(xk, s)c̄2
k

 (4)

The superscript ˜denotes the Laplace transform. s = σ+2πif , where s is the Laplace variable,

σ is the growth rate and f is the frequency.

The flow in converging (area-decreasing) and diverging (area-increasing) sections is modelled

distinctly by OSCILOSbrass, using different definitions for Bk,1 and Bk,2. This distinction

remains from the solver’s application to gas turbine engines. The stagnation pressure loss due

to mean flow expansion is not usually considered significant in brass instruments.

Area-increasing

At the area increase interface, the mass and energy flux are unchanged but the momentum

flux is increased by the axial force on the walls [8]. The Bk matrices therefore become

Bk,1 =


0 c̄k+1

c̄k
M̄k

c̄k+1
c̄k

Θk 2M̄k M̄2
k

γ
γ−1M̄k M̄2

k − 1
γ−1M̄k

 (5a)

Bk,2 = Θk


0 1 M̄k+1

1 2M̄k+1 M̄2
k+1

γ
γ−1

c̄k+1
c̄k
M̄k+1

c̄k+1
c̄k
M̄2

k+1 − γ
γ−1

c̄k+1
c̄k
M̄k+1

 (5b)
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where Θk = Sk+1
Sk

denotes the downstream ratio of sectional surface areas, and M̄k the mean

tube mach number.

Area-decreasing

At an area decrease interface, the mass and energy flux are unchanged, and the flow through

the interface may be considered isentropic. This leads to

Bk,1 =


0 c̄k+1

c̄k
M̄k

c̄k+1
c̄k

1
ρ̄γ
k

0 − 1
ρ̄γ
k

γ
γ−1M̄k M̄2

k − 1
γ−1M̄k

 (6a)

Bk,2 = Θk


0 1 M̄k+1

1
Θkρ̄γk+1

0 − 1
Θkρ̄γk+1

γ
γ−1

c̄k+1
c̄k
M̄k+1

c̄k+1
c̄k
M̄2

k+1 − γ
γ−1

c̄k+1
c̄k
M̄k+1

 (6b)

Transmission-line equations

The wave amplitudes at the inlet and outlet of the bore are related by Eq. 7. Ē(s) is an

entropy wave strength which in this implementation remains uniformly zero throughout the

domain. 
Ā+
N(s)

Ā−
N(s)

ĒN(s)

 = G1,N−1(s)


Ā+

1 (s)

Ā−
1 (s)

Ē1(s)

 (7)

The G1,N−1(s) matrix is given by

Gj,k(s) = Zk(s)Zk−1(s) . . .Zj(s) (8)

and the Zk(s) matrix is defined as

Zk(s) = (Bk,2C2Dk,2(s))−1 Bk,1C1Dk,1(s) (9a)
Ā+
k+1(s)

Ā−
k+1(s)

Ēk+1(s)

 = Zk(s)


Ā+
k (s)

Ā−
k (s)

Ēk(s)

 (9b)
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where

C1 = C2 =


1 1 0

1 −1 0

1 1 −1

 (10)

Dk,1(s) =


e−τ+

k
s

1

e−τsks

 Dk,2(s) =


1

e−τ−
k+1s

1

 (11)

τ sk = x− xk−1

ūk
(12)

2.2.3 Discretisation Scheme

The ability of OSCILOSbrass to interpolate over several analytical profiles, creating a

‘staircase’ of cylindrical sections, is detailed in Sec. 3.2.1. The equations behind the implementation

are included here in general form.

Consider an analytical profile described by some shape function η = P (z) where η is an

arbitrary radial co-ordinate, z an arbitrary axial co-ordinate and P some shape function

defined over a given z-range. We seek to discretise radially and axially, mapping η to r and z

to x to create a ‘staircase’ profile which achieves:

• Initial radius r0 at axial location x0, and final radius rN at xN

• N cylindrical sections (‘steps’ on the staircase)

• Minimal deviation from the analytical profile

• Enclosed revolved volume nearly equivalent to that of the analytical profile

The requirement for the distance between x0 and xN to be divided intoN cylinders necessitates

N + 1 interfaces, so x is sampled by N + 1 points, as shown in Fig. 8.

In order to achieve minimum deviation from the analytical enclosed volume, we wish the

analytical profile to pass through the ‘centre’ of the staircase. Consequently, we require:

• The radius of each tube to fall between the analytical radii at its ends, with the exception

of the first and last cylinders, whose radii are fixed by r0 and rN respectively

• The first and last cylinders to be ‘half-length’ to avoid excessive deviation at their internal

interfaces
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Figure 8: Conical profile with N = 4 cylindrical sections showing interface locations xk.

This is achieved using a finer discretisation in z than in x. The radius function is sampled at

axial points intermediate to the interface locations. The z co-ordinate is therefore sampled by

2N − 1 points, such that there are N + 1 interface locations and N − 2 intermediate radius

sample points, as shown in Fig. 9. The z-range required to define the shape of P (z) is therefore

z0 ≤ z ≤ z2N−2.

Figure 9: Conical profile with N = 4 cylindrical sections showing 2N − 1 = 7 axial sampling
locations zm, with interfaces located at z0, z1, z3, z5, z6 and radii ηk sampled at z0, z2, z4, z6, z6.

Additionally, for nonlinear profiles, we desire the axial samples to have greater density in

regions of larger radial gradient dP
dz . To achieve this, the z samples are distributed using the

inverse of P (z), P−1(η). A linearly spaced set of η co-ordinates are passed to the P−1 function

according to Eq. 13, yielding the vector [z] whose density is biased by dP
dz , as shown in Fig. 10.

linspace(a, b, n) indicates a vector of n linearly spaced points between a and b.

[z] = P−1 (linspace(P (z0), P (z2N−2), 2N − 1)) (13)

The co-ordinates in [z] are then linearly mapped to x by Ξ(z) as in Eq. 14a, and the radius r

is given by R(z) according to Eq. 14b.
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Figure 10: Parabolic profile P (z) = z2, interpolated by N = 4 cylindrical sections showing
2N − 1 = 7 axial sampling locations zm, spaced according to the square root of a linearly
spaced sequence of η values between P (z0) and P (z2N−2).

Ξ(z) = x0 + (xN − x0) z − z0

z2N−2 − z0
(14a)

R(z) = r0 + (rN − r0) P (z)− P (z0)
P (z2N−2)− P (z0) (14b)

It remains to generate the radial co-ordinates [x] and axial co-ordinates [r], as given in Eqs. 15a

and 15b respectively. Note that the radial dimension is the same for the final two interfaces,

because each describes its downstream cylinder.

[x] = Ξ([z0, z1, z3, z5, . . . z2N−3, z2N−2]) (15a)

[r] = R([z0, z2, z4, z6, . . . z2N−2, z2N−2]) (15b)

This discretisation scheme allows the specification of a general shape function P (z). For

each shape (e.g. linear, parabola, exponential), only the function P (z), the inverse function

P−1(η), and the initial and final z values, are required. These are given in the definition of

each supported TubeIndex in Table. 7.
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3 Inputs

OSCILOSbrass takes as input a list of configuration settings, and the geometry to solve for.

These are each given by human-readable files, Config.txt and Geometry.txt respectively,

located in the ./Inputs/ subfolder. In addition, when calling OSCILOS_brass() as a function,

configuration parameters may be supplied in Name, Value pairs.

3.1 Configuration

The configuration parameters are read from the configuration file, ./Inputs/Config.txt, by

default. The values of these parameters define the boundary conditions used, the mean flow

conditions, the scope of the solution, plot options and save locations for the various inputs

and outputs.

Each line of the config file (except those for additional boundary condition data described in

Sec. 3.1.6, Sec. 3.1.7 and Sec. 3.1.8) should take the form

param_name param_value [unparsed text]

The config file is whitespace-separated (e.g. tab-separated), and parsed line-by-line. Lines

which do not begin with a valid param_name are ignored.

Each param_value has one of four types:

• integer - a positive whole number

• double - a floating point number saved to double precision

• string - a string of characters containing no whitespace

• logical - a number or string which represents a boolean value. TRUE, ON and 1 are

interpreted as true, and any other character string is interpreted as false

The param_value is read up to and excluding the next whitespace, newline or % character.

Where the expected param_value type is not found, a warning is thrown and the default

parameter value is used if it exists. param_name and param_value are case-insensitive, so

INLET_TYPE is interpreted as inlet_type, and TRUE as true.

In addition, when OSCILOSbrass is invoked by a function call to OSCILOSbrass, configuration

options may be specified as arguments to OSCILOS_brass(), in Name, Value argument pairs.
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Options passed by arguments override those parsed from the config file, allowing one or more

parameters to be updated between successive calls to OSCILOS_brass() without any change

to the config file. This allows for easy setup of parametric investigative studies seeking to

iterate over a particular parameter, such as the example in Sec. 5.

3.1.1 Mean Flow

Brass instruments experience a mean flow, supplied by the player. The Mach numbers achieved

under playing conditions however are very small (typically < 0.01) and consequently do not

significantly affect the acoustic behaviour of the bore. OSCILOSbrass however requires a

nonzero mean flow to avoid singularity of the system of flow equations.

Flow conditions at the inlet - pressure, temperature and velocity - are supplied by the Mean

Flow parameters in Table 1. Flow velocity is specified either as a Mach number or as a velocity,

as selected by choice_M1_u1.

If the magnitude of the inlet Mach number is small enough to risk singularity or ill-conditioning

of the flow equations, it will be increased to a negligible, but finite, value (currently 1e-5).

Table 1: Mean Flow Configuration Parameters

Name Type Optional Default Purpose

p1 double 7 - Inlet Pressure [Pa]

T1 double 7 - Inlet Temperature [K]

M1_u1 double 7 - Inlet Mach number [-] or Velocity [m/s]

choice_M1_u1 integer 3 1 choice_M1_u1 = 1 =⇒ Mach number
choice_M1_u1 = 2 =⇒ Velocity

choice_gamma integer 3 1 Not currently supported
choice_gamma = 1 =⇒ γ constant
choice_gamma = 2 =⇒ γ = γ(T )

3.1.2 Scan Range

The OSCILOS solver uses an eigensolver which performs a search for the complex eigenvalues

representing the modes of the system by the Laplace variable s. The scope of the search,

in terms of frequency (Im[s]) and growth rate (Re[s]), is determined from the scan range

configuration parameters shown in Table 2.

18



Table 2: Scan Range Configuration Parameters

Name Type Optional Default Purpose

min_freq double 3 0 Frequency scan lower bound [Hz]

max_freq double 3 1000 Frequency scan upper bound [Hz]

number_freq integer 3 20 Number of frequency starting points

min_GR double 3 -200 Growth rate scan lower bound [1/s]

max_GR double 3 200 Growth rate scan upper bound [1/s]

number_GR integer 3 10 Number of growth rate starting points

The search is conducted by MATLAB’s fsolve() from seed points spaced linearly throughout

frequency and growth rate ranges specified - the number of seed points is configurable using

number_freq and number_GR. If the number of modes is close to or greater than number_freq,

the solver may miss eigenvalues, and this will be evident on the contour plot, see Sec. 4.2.2.

3.1.3 Outputs and Plots

This section lists the configuration parameters pertaining to outputs and plots. For more

detailed discussion of their meaning, see Sec. 4.

Among the various formats in which OSCILOSbrass outputs data, there is wide variation in

the implications of each for solution time and output file size. The configuration parameters in

Table 3 enable the user to disable certain output types to reduce solution time. In particular,

the user’s attention is drawn to the eigenvalue contour map, the calculation of which is

responsible for a very significant proportion of the solution time if the geometry is complex -

setting contour_plot to OFF may in some cases reduce the runtime by more than half.

3.1.4 Filenames

The name of the various text files for input and output may be specified by the parameters in

Table 4. The config_filename parameter cannot be specified by the config file, as it locates

the file itself, so is only relevant if passed as an argument when OSCILOSbrass is called as a

function.
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Table 3: Output and Plot Configuration Parameters

Name Type Optional Default Purpose

geom_plot logical 3 TRUE Plot geometry

mf_plot logical 3 TRUE Plot mean flow

bc_plot logical 3 TRUE Plot boundary conditions

contour_plot logical 3 TRUE Plot Eigenspace Contour Map

efp_plot logical 3 TRUE Plot Equivalent Fundamental Pitch

plot_modes integer 3 5 No. of mode shapes to plot, 0 to disable

small_plots logical 3 FALSE Reduce plot sizes (for smaller screens)

save_figs logical 3 TRUE Save plots as .fig

save_pdfs logical 3 TRUE Save plots as .pdf

run_name string 3 Name of output subfolder. A new folder
will be created under ./Outputs/. Leave
blank to write directly to ./Outputs.

warn_ovwrt logical 3 TRUE Bring up dialog box if the folder specified
by run_name already exists

cl_out logical 3 TRUE Output progress updates to command line

log_out logical 3 TRUE Output progress updates to log file

fin_msg logical 3 TRUE Display messagebox when finished

no_popups logical 3 FALSE Disable all popups and plots (faster)

Table 4: Text File Name Configuration Parameters

Name Type Optional Default Purpose

config_filename string 3 Config.txt Name of config file (input)

geom_filename string 3 Geometry.txt Name of geometry file (input)

eig_filename string 3 Eigenvalues.txt Name of mode list file (output)

geom_filename string 3 Logfile.txt Name of log file (output)

20



3.1.5 Boundary Conditions

OSCILOSbrass supports several different boundary condition (BC) types, which are specified

using the inlet_type and outlet_type parameters. The inlet and outlet BCs may each

require up to three numerical parameters to define the BC, given by inlet_param1, inlet_param2

and inlet_param3 for the inlet, and by an equivalent set for the outlet, as detailed in Table 5.

Table 5: Boundary Condition Configuration Parameters

Name Type Optional Default Purpose

inlet_type integer 7 - Specifies BC type at inlet, see Table 6

inlet_param1 double 3 0 Parameter 1 for inlet BC, if required

inlet_param2 double 3 0 Parameter 2 for inlet BC, if required

inlet_param3 double 3 0 Parameter 3 for inlet BC, if required

outlet_type integer 7 - Specifies BC type at outlet, see Table 6

outlet_param1 double 3 0 Parameter 1 for outlet BC, if required

outlet_param2 double 3 0 Parameter 2 for outlet BC, if required

outlet_param3 double 3 0 Parameter 3 for outlet BC, if required

The number of parameters required and interpretation of their values depends on the BC type

selected by inlet_type and outlet_type. Supported values of the ?let_type parameters

are given in Table 6, where ?let_ refers both to inlet_ and outlet_.

User-defined boundary conditions may be achieved by supplying additional data, which is

included in the config file. Note that the format in which these data are required differs from

the other configuration options. The order in which the configuration options and the user

data appears is immaterial, but each user data block must be contiguous and contain no blank

lines.
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Table 6: Boundary Condition types

Name Type Value Meaning

?let_type integer 1 Open condition, R̃ = −1

2 Closed condition, R̃ = 1

3 Not implemented
Reserved for Choked condition

4 Time lag condition, R̃(s) = Ae−sτ

A = ?let_param1 (amplitude)
τ = ?let_param2/1000 (time lag in ms)

5 Phase lag condition, R̃ = Ae−iϕ

A = ?let_param1 (amplitude)
ϕ = ?let_param2 (phase)
?let_param3 = 0 for ?let_param2 in [radians]
?let_param3 = 1 for ?let_param2 in [degrees]

6 Polynomial from Coefficients with Time Delay condition,

R̃(s) = bns
n + bn−1s

n−1 + ...+ b1s+ b0
amsm + am−1sm−1 + ...+ a1s+ a0

e−sτ

τ = ?let_param1/1000 (time lag in ms)
n = ?let_param2 (numerator order)
m = ?let_param3 (denominator order)
Values of a and b are read separately from the Config file, see
Sec. 3.1.6

7 Not implemented
Reserved for Polynomial from User Data with Time Delay condition

8 Not implemented
Reserved for Heat Exchanger condition

9 Gain and Phase Interpolated from User Data condition
?let_param1 = 0 for phase in [radians]
?let_param1 = 1 for phase in [degrees]
Gain and Phase data vs Frequency [Hz] are read separately
from the Config file, see Sec. 3.1.7

10 User-defined Gain and Phase functions condition
?let_param1 = 0 for phase in [radians]
?let_param1 = 1 for phase in [degrees]
Gain and Phase function definitions are read separately from
the Config file, see Sec. 3.1.8
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Table 6: Boundary Condition types (continued)

11 Unflanged Levine-Schwinger condition [2] using polynomial
approximations for |R| and l by Norris and Sheng [9]
R̃(k) = −|R|e−2ikl k(s) = Im[s]

c

12 Flanged Levine-Schwinger condition using polynomial
approximations for |R| and l by Norris and Sheng [9]
R̃(k) = −|R|e−2ikl k(s) = Im[s]

c

13 Oscillating Piston Radiating into Hard Tube condition [10] [11]

Zs = Z0 + jωρ0
∑
n≥1

J2
1 (k0na)

k2
0n

√
k2

0n − k2
0 · J2

0 (k0na)

k0n is the nth root of J ′0(k0nR) = 0 R̃ =
Zs

R2

a2 − Z0

Zs
R2

a2 + Z0
R = inlet/outlet radius given by geometry
a = R · ?let_param1 (piston radius, ?let_param1 is
dimensionless)

14 Oscillating Masses Due to Orifice Ahead of Oscillating Piston
condition [11] [12]

MI = 4πb2ρ0R
∑
m≥1

J2
1 (xmb) coth(xml)
(xmR)3J2

0 (xmR)

MII = 4πb2ρ0R
∑
m≥1

J2
1 (xmb)

(xmR)3J2
0 (xmR)

xm are the roots of J ′0(xmR) = 0

Zm = ik(MI +MII)
πR2

Z1 = i(1− cos(kd))
sin(kd) Z2 = −i

sin(kd)

Zpiston = R2

a2

1 + jω

c

∑
n≥1

J2
1 (k0na)

k2
0n

√
k2

0n − k2
0 · J2

0 (k0na)


Zt = Zm + Z1 + (Z1 + Zpiston)Z2

Z1 + Zpiston + Z2
R̃ = Zt − 1

Zt + 1
R = inlet/outlet radius given by geometry
a = R · ?let_param1 (piston radius)
b = R · ?let_param2 (orifice radius)
d = R · ?let_param3 (orifice offset)
?let_param1, ?let_param2 and ?let_param3 are
dimensionless
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3.1.6 Polynomial Coefficients for BC6

Boundary Condition type 6 allows the user to specify the frequency dependence of the reflection

coefficient as a ratio of polynomials in the Laplace variable, with additional time lag, according

to Eq. 16.

R̃(s) = bns
n + bn−1s

n−1 + ...+ b1s+ b0

amsm + am−1sm−1 + ...+ a1s+ a0
e−sτ (16)

?let_param2 = n and ?let_param3 = m are required to specify the order of the numerator

and denominator respectively. ?let_param1/1000 = τ .

The coefficients bn . . . b0 and am . . . a0 are specified by two lines in the config file. These

must be preceded by the header text INLET_POLYNOMIAL_COEFFICIENTS for the inlet, or

OUTLET_POLYNOMIAL_COEFFICIENTS for the outlet. There may optionally be a line of text

between the header and the coefficients for readability. The lines must appear in the order

described, as shown:

[HEADER]

[TITLE TEXT (optional)]

[NUMERATOR COEFFICIENTS b_0 ... b_n]

[DENOMINATOR COEFFICIENTS a_0 ... a_m]

n + 1 and m + 1 coefficients respectively must be supplied in descending power order, with

the highest-order coefficient first. So, for example, to specify the coefficients of 2nd order

polynomials at the outlet, with time delay 0.05 ms, the following lines should be included in

the config file:

outlet_type 6

outlet_param1 0.05

outlet_param2 2

outlet_param3 2

OUTLET_POLYNOMIAL_COEFFICIENTS

sˆ2 s 1

1e-7 2e-4 0.8

2e-7 1e-4 1.2
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3.1.7 Gain/Phase User Data for BC9

Boundary Condition type 9 enables the user to specify data pertaining to gain and phase at

the boundaries, and the reflection coefficient is constructed by interpolation over this dataset.

Frequency must be specified in [Hz]

?let_param1 = 0 =⇒ phase given in [radians].

?let_param1 = 1 =⇒ phase given in [degrees].

The data must be included in the config file in tab-separated format, under the header

INLET_GAIN_PHASE_DATA or OUTLET_GAIN_PHASE_DATA, in the format shown:

[HEADER]

[TITLE TEXT (optional)]

[DATA line 1 {Frequency} {Gain} {Phase}]

[DATA line 2 {Frequency} {Gain} {Phase}]

...

So for example, to specify gain and phase data with phase in degrees for the inlet BC, the

config file should include the following lines:

inlet_type 9

inlet_param1 1

INLET_GAIN_PHASE_DATA

Frequency[Hz] Gain[-] Phase[rad_◦]

0 1 180

200 0.9 170

500 0.75 140

1000 0.5 90

The data are interpolated using the ’makima’ modified Akima Piecewise Cubic Hermite

interpolation scheme [13] by default, as shown in Fig. 18 in Sec. 4.1.3.
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3.1.8 Gain/Phase Functions for BC10

Boundary Condition type 10 allows the user to specify reflection coefficient gain and phase as

analytical functions of frequency. The functions are specified using the MATLAB syntax for

anonymous functions, so may not contain any MATLAB keywords and must each occupy a

single line. Consequently the functions must begin with the @ character, and each are read

until either the end of the line, or the first % character.

?let_param1 is used to specify the units returned by the phase function.

?let_param1 = 0 =⇒ phase given in [radians].

?let_param1 = 1 =⇒ phase given in [degrees].

The functions should take a single argument, equivalent to frequency in [Hz]. The functions

should immediately follow a header line reading either INLET_GAIN_PHASE_FUNCTIONS or

OUTLET_GAIN_PHASE_FUNCTIONS as appropriate. The gain function should be specified first,

then the phase function, with no blank lines between them. The function specification should

follow the general format:

[HEADER]

[GAIN FUNCTION]

[PHASE FUNCTION]

So to specify gain and phase as a function of frequency at the outlet, interpreting the phase

in degrees, the config file should include the following lines:

outlet_type 10

outlet_param1 1

OUTLET_GAIN_PHASE_FUNCTIONS

@(f) 1 + f.ˆ2./10e5 % Gain

@(f) 135 - 0.5*90*cos(f./1000.*pi) % Phase

3.2 Geometry

The geometry file defines the instrument bore geometry, and is located at ./Inputs/Geometry.txt

by default, although a different filename may be specified by the geom_filename configuration

parameter.
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OSCILOSbrass models the geometry using cylindrical finite elements. The elements are

specified by their circular bounding faces, termed ‘sections’. Each section must be located

axially, and its radius specified. Each cylindrical element retains the radius of its upstream

section, and extends axially to the next section. The inlet is located at the smallest axial

co-ordinate, and the outlet at the largest. The sequence of sections in the file is not significant

- the sections are sorted such that their axial co-ordinates are monotonically increasing, before

the cylinders are constructed.

The geometry file should be tab-separated with at least four columns. Each line of the file

represents a section. The role of each column is outlined below:

1. Axial position x - Axial position of the section in [m]

2. Radius r - Section radius in [m]

3. SectionIndex - Section type (nonzero values are not currently supported by OSCILOSbrass but

parameter retained for compatibility with other OSCILOS versions)

4. TubeIndex - Tube shape - additional sections may be interpolated, approximating other

tube shapes - see Sec. 3.2.1 and Table 7

An optional 5th column can also be included to control the level of discretisation when

TubeIndex is nonzero:

5. TubeSplit - Number of smaller tubes into which the original tube is divided. If

TubeSplit = 0, or if this column is not present in the file, the default value of 50 tubes

is used. Where TubeIndex = 0, TubeSplit is ignored.

The geometry file must begin with a line of column headers, one for each column. A blank

line is interpreted as the end of the file. The file should therefore be laid out as follows:

x[m] r[m] SectionIndex TubeIndex [TubeSplit]

{Section 0}

{Section 1}

{...}

For example, the cylindrical geometry in Sec. 1.2.1 (shown in Fig. 11) may be specified by the

geometry file:
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x[m] r[m] SectionIndex TubeIndex

0 0.05 0 0

0.25 0.05 0 0

0.5 0.05 0 0

0 50 100 150 200 250 300 350 400 450 500

-100

-50

0

50

100

Inlet

Outlet

Figure 11: Cylindrical pipe with 3 cylindrical sections.

3.2.1 TubeIndex and TubeSplit

If two consecutive sections have different radius, a radius discontinuity arises at the downstream

section. The TubeIndex parameter is used to distribute this discontinuity over the whole tube

length by dividing it axially into many shorter tubes, which allows a ‘staircase’ approximation

to shapes other than cylinders. OSCILOS performs this operation internally by interpolating

to create more sections within the tube.

A conical profile can be created between two sections of different radius as shown in Fig. 12,

using the geometry file:

x[m] r[m] SectionIndex TubeIndex

0 0.05 0 0

0.25 0.05 0 1

0.5 0.1 0 0

0 50 100 150 200 250 300 350 400 450 500

-200

-100

0

100

200

Inlet

Outlet

Figure 12: Cylindrical tube ending in conical horn, default interpolation.
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The default interpolation can be altered, for example to decrease the number of elements to

reduce solution time, as shown in Fig. 13, using the TubeSplit column:

x[m] r[m] SectionIndex TubeIndex TubeSplit

0 0.05 0 0 0

0.25 0.05 0 1 4

0.5 0.1 0 0 0

0 50 100 150 200 250 300 350 400 450 500

-200

-100

0

100

200

Inlet

Outlet

Figure 13: Cylindrical tube ending in conical horn, interpolation defined by TubeSplit.

OSCILOSbrass supports several interpolated shapes, each with its own TubeIndex - these are

listed in Table 7. The shapes are interpolated so that the volume enclosed by the ‘staircased’

geometry closely approximates that of the equivalent analytical shape. The number of tubes

given by TubeSplit are distributed with greater density in regions of greater radial gradient.

3.2.2 Cautionary Notes

• OSCILOSbrass requires at least 3 sections (2 tubes) after any tube interpolation is

complete - if only 2 sections are given, and the intervening tube is cylindrical (initial

section TubeIndex = 0, no interpolation), a warning is thrown and a third section is

created at the midpoint between the two, with radius the average of the others, and all

other parameters equivalent to those of the inlet.

• The line in the file with greatest axial co-ordinate (the last in all of the above examples)

is treated as the outlet, and should have TubeIndex = 0, because there is no tube after

the last section. A warning is thrown if this is not the case.
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Table 7: TubeIndex values and corresponding tube shapes

Value Shape Example

0 Cylinder, no interpolation, TubeSplit ignored

1 Cone P (z) = z P−1(η) = η x0 < z < xN

2

Exponential horn, minimum gradient
∣∣∣dPdz ∣∣∣ at upstream end

P (z) = ez P−1(η) = ln(η)

−5 < z < 0

3

Exponential horn, minimum gradient
∣∣∣dPdz ∣∣∣ at downstream end

P (z) = ez P−1(η) = ln(η)

0 > z > −5

4

Parabolic horn, zero gradient dP
dz at upstream end

P (z) = z2 P−1(η) = √η

0 < z < 1

5

Parabolic horn, zero gradient dP
dz at downstream end

P (z) = z2 P−1(η) = √η

1 > z > 0

6 Sigmoid P (z) = 1
1 + e−z P−1(η) = − ln

(
1
η − 1

)
−5 < z < 5

7 Sinusoid P (z) = 1−cos(z) P−1(η) = cos−1(1−η) 0 < z < π
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4 Outputs

The outputs fall into two categories: initialisation data, and results data. The initialisation

outputs are produced before the solution begins, and serve to visualise and record the

simulation setup. The results outputs visualise and record the various results yielded by

the solver.

4.1 Initialisation

Initialisation data consists of: a record of the configuration parameters used, a copy of the

geometry file, and optionally the geometry, mean flow and boundary condition plots. These

are saved to ./Outputs/Initialisation/ (or, if run_name is specified by the configuration

file, ./Outputs/run_name/Initialisation/).

4.1.1 Geometry

The Geometry plot shows the geometry after any interpolation is complete. The boundaries

of the geometry are shown as thick black lines, and the tubes are oriented so that the flow

direction is left → right. Inlet (left-hand end) and outlet (right-hand end) are shown as thick

vertical coloured lines. The internal sections provided in the original geometry file are marked

with thin vertical black lines. The ‘staircasing’ created by interpolating over a tube with

nonzero TubeIndex is left without vertical lines.

The trumpet-like geometry given in Fig. 14 was generated from the following geometry file:

x[m] r[m] SectionIndex TubeIndex TubeSplit

0 0.02 0 6 0

0.03 0.004 0 1 10

0.1 0.008 0 0 0

0.1 0.01 0 0 0

0.6 0.01 0 2 25

0.9 0.06 0 0 0

The geometry plot is enabled by the input_plots configuration option. If save_figs and/or

save_pdfs is enabled, the plot is saved to ./Outputs/Initialisation/Geometry.* (or

./Outputs/run_name/Initialisation/Geometry.*, if run_name is specified by the config

file), where .* denotes .fig or .pdf.
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-50

0
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Inlet

Outlet

Figure 14: Trumpet-like geometry showing finely and coarsely interpolated sections, and a
discontinuity between the mouthpiece backbore and the remainder of the instrument (scale
and dimensions not representative of instrument).

4.1.2 Mean Flow

The Mean Flow plot visualises the axial mean velocity and temperature distributions, as shown

in Fig. 15. Where a radius discontinuity exists in the geometry file, a gap appears in the mean

velocity and temperature curves to reflect the jump condition. Interpolated tubes by contrast

are ‘staircased’ in the mean flow plots, so that the effect of the discretisation level on mean

flow is evident. The relatively coarse discretisation in Fig. 15 shows the greater influence of

step changes at small radii (higher velocities). The finer discretisation in Fig. 16 achieves a

smoother variation in mean flow properties.

The mean flow plot is enabled by the input_plots configuration option. If save_figs

and/or save_pdfs is enabled, the plot is saved to ./Outputs/Initialisation/Mean_flow.*

(or ./Outputs/run_name/Initialisation/Mean_flow.*, if run_name is specified by the

configuration file), where .* denotes .fig or .pdf.

4.1.3 Boundary Conditions

The boundary conditions are formulated as complex reflectances at the inlet and outlet, and

specified by the boundary condition configuration parameters (see Sec. 3.1.5). The dependence

of these on frequency is visualised over the frequency range specified by the scan range

configuration parameters (see Sec. 3.1.2). Gain and phase are visualised for each as shown in

Fig. 17.

If the boundary condition is specified by interpolation from data as described in Sec. 3.1.7,

the data is also plotted, as shown in Fig. 18.

The boundary conditions plot is enabled by the input_plots configuration option. The plot is

saved to ./Outputs/Initialisation/Boundary_Conditions.* (or, if run_name is specified
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Figure 15: Mean Flow plots for trumpet-like geometry with same discretisation level as in
Fig. 14.

Figure 16: Mean Flow plots for trumpet-like geometry with a finer discretisation level than
Fig. 14, with TubeSplit set to 200 for each interpolated shape.
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Figure 17: Boundary condition plots: closed-end boundary condition (BC2) at the inlet and
Levine-Schwinger condition (BC11) at the outlet.
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Figure 18: Boundary condition plots defined by user data (BC9) showing interpolations for
inlet and outlet.
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by the configuration file, ./Outputs/run_name/Initialisation/Boundary_Conditions.*)

if save_figs and/or save_pdfs is enabled, where .* denotes .fig or .pdf.

4.2 Results

Results data includes: a text file containing the modes found, and optionally a log file, the

eigenvalue contour map, the equivalent fundamental pitch plot, and mode shape plots. These

are saved to ./Outputs/Results/ (or ./Outputs/run_name/Results/ if run_name is specified

by the configuration file).

4.2.1 Eigenvalue List File

The eigenvalue list file is the only non-optional output, and contains a summary of the solver

results in whitespace-separated, human-readable form. It comprises 5 columns, labelled:

Mode number Frequency [Hz] Growth rate [1/s] EFP [cents] Note

The Mode number column contains a list of ascending integers describing the modes in order

of ascending frequency. For more discussion of Frequency and Growth rate, see Sec. 4.2.2.

For an explanation of equivalent fundamental pitch, or EFP, see Sec. 4.2.3. The Note column

gives the name of the nearest chromatic note to the mode frequency in scientific pitch notation

with pitch standard A4 = 440 Hz, and the deviation in cents from that note where positive

deviation means the mode is sharper.

The eigenvalue list file is saved to ./Outputs/Results/Eigenvalues.txt (or, if run_name is

specified by the configuration file, ./Outputs/run_name/Results/Eigenvalues.txt).

4.2.2 Eigenvalue Contour Map

The eigenvalue contour map (Fig. 19) visualises the residual in the transmission-line calculation.

The eigenvalues of the system, and hence the acoustic modes, lie at the minima of this function.

The plot represents the Laplace variable space, in the range specified by the scan range

configuration parameters, with the real part corresponding to growth rate on the abcissa, and

the imaginary part converted to [Hz] on the ordinate. The resolution of the plot (number of

residuals calculated) is 10 times the num_freq and num_GR parameters, in the respective axes.

The eigenvalues previously found by the solver are overlaid on the contour plot as white stars.

In some cases, e.g. where num_freq is insufficient, the solver may miss one or more eigenvalues.
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Figure 19: Eigenvalue Contour Map, showing eigenvalues (white stars) located at minima.

If this happens, the contour plot will exhibit minima which have no white star, as illustrated

in Fig. 20, indicating that the solver was poorly configured and the calculation should be

repeated if accurate mode numbers are desired. In most cases, increasing num_freq will solve

the problem, but the user may also increase num_GR if there is large variation in growth rate.

The eigenvalue contour plot is enabled by the contour_plot configuration option. It is saved

to ./Outputs/Results/Eigenvalues_map.* (or, if run_name is specified by the configuration

file, ./Outputs/run_name/Results/Eigenvalues_map.*), if save_figs and/or save_pdfs

is enabled, where .* denotes .fig or .pdf.

Calculating the residuals for every point on the eigenvalue plot requires the solver to repeat the

transmission line calculation (10×num_freq)×(10×num_gr) times, which for many-sectioned

geometries takes considerable computational time. It is recommended to use the contour

plot to verify that no eigenvalues were missed for every combination of geometry, boundary

condition types and scan range settings. However, if multiple runs on equivalently-shaped
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Figure 20: Eigenvalue Contour Map for realistic trombone geometry, created with insufficient
num_freq such that modes 4, 8, 11 and 13 have been missed.

geometry are to be conducted, the computation time for each iteration may be vastly reduced

by setting contour_plot to FALSE.

4.2.3 Equivalent Fundamental Pitch

Equivalent Fundamental Pitch, as defined by Chick et al [14], allows a quantitative measure of

the inharmonicity of an instrument by evaluating the deviation of the ‘equivalent fundamental’

corresponding to each mode, from some reference. It is given by Eq. 17, where fi is the

frequency of the ith mode, and F is the reference fundamental pitch, conventionally taken as

f4/4, the note to which brass players often tune their instruments. The unit of this definition

is the [cent], equal to 1/100th of a semitone, or a frequency ratio of 1200
√

2.

EFP(fi) = 1200
log(2) log

[
fi
iF

]
(17)

In musical acoustics literature, EFP is typically plotted for a sequence of modes as in Fig. 21.
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Figure 21: Equivalent Fundamental Pitch (EFP) plot for trombone geometry from Bilbao and
Chick [6].

By default, OSCILOSbrass takes F = f4/4, as is conventional. If there are fewer than 4

modes found overall, the value F = fi/i is used where i is the total number of modes. The

fundamental mode of most brass instruments is far from the equivalent fundamental of all

other modes and is therefore usually excluded from the EFP plot. For geometries whose

modes are inherently not harmonically distributed, the EFP plot does not give meaningful

information.

If the solver misses eigenvalues, the EFP plot is inaccurate for any modes above those which

were missed, because it relies on an accurate mode number i for each frequency. Approaches

to rectify this are discussed in Sec. 4.2.2.

4.2.4 Mode Shapes

OSCILOSbrass calculates the mode shape, i.e. the axial distribution of acoustic pressure and

velocity magnitude, for each mode. These are visualised by the mode shape plots, as in Fig. 22.

The number of mode shapes plotted is controlled by the plot_modes configuration parameter,

and the number of modes found overall within the scan range - whichever is the lowest.

The mode shape plots may be disabled by setting plot_modes to 0. If save_figs and/or

save_pdfs is enabled, the mode shape plots are saved to ./Outputs/Results/Mode_n.* (or,
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Figure 22: Mode shape plots: acoustic velocity and pressure for the first 4 modes of an open
cylinder, ∅100 mm and 1 m in length, with the Levine-Schwinger boundary condition applied
at each end.
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if run_name is specified by the configuration file, ./Outputs/run_name/Results/Mode_n.*),

where .* denotes .fig or .pdf, and Mode_n is replaced by Mode_1, Mode_2 etc.

Where the geometry contains radial discontinuities, corresponding discontinuities in the

velocity distribution will be evident due to the area change. The evolution of velocity over

each section may be increasing or decreasing depending on the phase of the velocity at any

given point, and this may be either concordant with or opposite to the direction of the velocity

jump at the interface.
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Figure 23: Mode shape for 2nd mode of trumpet-like geometry showing discontinuities in
velocity plot in regions of large radius gradient due to staircasing effect and 1D approximation.

One relatively extreme example is given in Fig. 23, generated by the coarsely-discretised

trumpet-like geometry in Fig. 14. Here the evolution of the acoustic velocity opposes that of

the mean flow velocity, creating an unusual terracing in the mouthpiece, backbore and bell

regions. This behaviour naturally does not exist in reality, arising here from the staircase

approximation to smoothly varying bore shapes. The velocity discontinuity between the

backbore and cylindrical section, despite resulting from a physical radius discontinuity, is

also unphysical - an artefact of the 1D approximation. Nevertheless, the mode shapes provide

valuable information about the location of pressure an velocity nodes, and are useful for

validating the configuration of boundary conditions. The pressure is of course continuous

throughout.
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5 Function Calls to OSCILOS_brass()

OSCILOSbrass is wrapped in a single function which may be invoked from any other script.

This provides a convenient abstraction for use in parameter sweep or optimisation routines.

5.1 Function Definition

eigenvalues = OSCILOS_brass(Name, Value, ... )

Arguments: all parameters detailed in Sec. 3.1 may be passed to the OSCILOS_brass function

in Name, Value optional argument pairs. These values override those parsed from the config

file. If no arguments are provided, the solver is configured solely by the config file.

Return Value: an array of complex eigenvalues in Laplace variable form.

5.2 Code Example

A short MATLAB example, using the solver to calculate the effect of temperature on the pitch

of the 4th mode of a trumpet-like geometry, follows. It is assumed that the solver is set up

exactly as the horn example in Sec. 1.2.2 (equivalent Config.txt and Geometry.txt files).

%% Script to demonstrate function calls to OSCILOS_brass
clear all
addpath('C:/Users/amacl/Downloads/OSCILOS_brass_release_1/');

T = (-20:5:30) + 273.2; % Temperatures in K from -20°C to 30°C

for i = 1:length(T) % For each Temperature value
EigVals{i} = OSCILOS_brass('T1', T(i), ...

... % Name of output file (retain results for each iteration)
'eig_filename', "EigVals_T_" + num2str(T(i)) + ".txt", ...
... % Suppress graphical outputs to speed up calculation
'no_popups', true, ...
'cl_out', false, ...
'log_out', false);

end

% Extract 4th eigenvalues, convert to frequency in Hz, and plot
FreqsMode4 = imag( cellfun( @(x) x(4), EigVals) )./2./pi;
plot(T - 273.2, FreqsMode4, 'g', 'LineWidth', 2);
xlabel('T (°C)'); ylabel('f_4 (Hz)');
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The output produced by this routine is shown in Fig. 24
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Figure 24: Temperature dependence of frequency of 4th mode f4 for example in Sec. 1.2.2.

42



References
[1] J. Li, D. Yang, C. Luzzato, and A.S. Morgans. OSCILOS Report. Technical report, Imperial

College London, London, 2017.

[2] H. Levine and J. Schwinger. On the Radiation of Sound from an Unfianged Circular Pipe.pdf.
Physical Review, 73(4):137–153, 1948. doi:10.1103/PhysRev.73.383.

[3] J. Backus and T. C. Hundley. Harmonic Generation in the Trumpet. The Journal of the
Acoustical Society of America, 49(2B):509–519, 2 1971. doi:10.1121/1.1912380.

[4] A. C. P. Braden. Bore optimisation and impedance modelling of brass musical instruments.
PhD thesis, University of Edinburgh, 2007. URL: http://www.acoustics.ed.ac.uk/wp-content/
uploads/Theses/Braden_Alistair__PhDThesis_UniversityOfEdinburgh_2006.pdf.

[5] S. Candel and T. Poinsot. Tutorial On Acoustics, 1988.

[6] S. Bilbao and J. Chick. Finite difference time domain simulation for the brass instrument
bore. The Journal of the Acoustical Society of America, 134(5):3860–3871, 2013. doi:10.
1121/1.4822479.

[7] A. Hirschberg, J. Gilbert, R. Msallam, and A. P. J. Wijnands. Shock waves in trombones.
The Journal of the Acoustical Society of America, 99(3):1754–1758, 3 1996. doi:10.1121/1.
414698.

[8] A. P. Dowling and S. R. Stow. Acoustic Analysis of Gas Turbine Combustors. Journal of
Propulsion and Power, 19(5):751–764, 2003. URL: http://arc.aiaa.org, doi:10.2514/2.6192.

[9] A. N. Norris and I. C. Sheng. Acoustic radiation from a circular pipe with an infinite flange.
Journal of Sound and Vibration, 135(1):85–93, 11 1989. doi:10.1016/0022-460X(89)
90756-6.

[10] O. K. Mawardi. On the Generalization of the Concept of Impedance in Acoustics. Journal of
the Acoustical Society of America, 23(5):571–576, 1951. doi:10.1121/1.1906806.

[11] F. P. Mechel. Formulas of Acoustics. Springer, 2008.

[12] K. M. Ivanov-Schitz, S. N. Rscherkin, and K. A. Welischanina. Über die Wirkung des
Schallabsorbers, der eine schwingende Oberfläche bedeckt, auf die Schallabstrahlung. Acustica,
13(6):403–406, 1963.

[13] Modified Akima piecewise cubic Hermite interpolation - MATLAB makima - MathWorks
United Kingdom. URL: https://uk.mathworks.com/help/matlab/ref/makima.html.

[14] J. P. Chick, C. Lumb, and D. M. Campbell. Passive acoustic characteristics and intonation
problems of modern orchestral horns. In Proceedings of the ISMA2004, Nara, Japan, 2004.

43

https://doi.org/10.1103/PhysRev.73.383
https://doi.org/10.1121/1.1912380
http://www.acoustics.ed.ac.uk/wp-content/uploads/Theses/Braden_Alistair__PhDThesis_UniversityOfEdinburgh_2006.pdf
http://www.acoustics.ed.ac.uk/wp-content/uploads/Theses/Braden_Alistair__PhDThesis_UniversityOfEdinburgh_2006.pdf
https://doi.org/10.1121/1.4822479
https://doi.org/10.1121/1.4822479
https://doi.org/10.1121/1.414698
https://doi.org/10.1121/1.414698
http://arc.aiaa.org
https://doi.org/10.2514/2.6192
https://doi.org/10.1016/0022-460X(89)90756-6
https://doi.org/10.1016/0022-460X(89)90756-6
https://doi.org/10.1121/1.1906806
https://uk.mathworks.com/help/matlab/ref/makima.html

